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Abstract--Particle settling velocity in the nonlinear drag range is investigated using a Monte Carlo 
simulation for particles in a low Reynolds number, isotropic, Gaussian, pseudo turbulence. The settling 
velocity is affected by both the trajectory bias, which enhances the settling velocity, and the nonlinearity 
of the drag associated with the turbulence, which reduces the settling velocity. The effect of the trajectory 
bias is important in an almost frozen turbulence when the settling velocity is comparable to the turbulence 
and particle motion in the creeping-flow regime. For a nonfrozen turbulence, the effect of the trajectory 
bias on the settling velocity may be overwhelmed by the effect of the nonlinear drag associated with the 
turbulence. The ensemble average of the second invariant of the turbulence deformation tensor, (IId), 
along the particle trajectories is obtained to characterize statistically the trajectory bias and the correlation 
between the particle concentration and turbulence structure. (lid) attains its maximum value at zero 
settling for a given particle inertia. The effect of increasing the settling velocity leads to an exponentially 
decreasing (li d ) for a large settling rate, and hence a significant reduction in the trajectory bias and the 
concentration-structure correlation. For very small or large particle inertia, (lid) vanishes. 
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1. I N T R O D U C T I O N  

It is known that a particle possesses a different gravitational settling velocity in an oscillating fluid 
than in a still fluid, in general. Tunstall & Houghton (1968) and Sch6neborn (1975) showed 
experimentally a reduction in the settling velocity of  a solid particle in an oscillating liquid. Hwang 
(1985) and Ikeda & Yamasaka  (1989) showed, through detailed analyses, that for particle motion 
in the nonlinear drag range the settling velocity, VT, in the direction of  gravity, et, of  the particle 
is l ower  than in a still liquid if the liquid is oscillating in the direction parallel to settling. Murray 
(1970) found that V T is smaller in a turbulent liquid (generated by two oscillating grids) than in 
a still liquid. The reduction in V T was shown to result from the nonlinearity in the drag law (Hwang 
1985). The effect of  the turbulence on the settling rate of  heavy particles in the nonlinear drag range 
was investigated analytically by Mei (1990) using a low Reynolds number  turbulence energy 
spectrum (Kraichnan 1970). It was shown that the nonlinearity in the drag law can cause a 
significant reduction in lit for particles in turbulence. 

Nielsen (1984) analyzed the trajectory of  sediment particles in a vortex flow (u, v) = c o ( - y ,  x), 
in which co is the angular velocity and (u, v) are the velocity components in the Cartesian 
coordinates (x, y). It was shown that the sediment particles can be suspended permanently in such 
a vortex flow. Nielsen thus attributed the reduction in the settling velocity observed in Murray 's  
experiment to the "vortex trapping",  i.e. the ordered turbulent eddies keep particles within the 
eddies and reduce the settling velocity of  the particles in liquid, rather than to the nonlinearity in 
the drag law. 

Maxey & Corssin (1986) studied the effect of  the spatial structure of  the fluid flow on the settling 
velocity of  heavy particles by examining the motion of  Stokesian particles in randomly oriented, 
periodic cellular flow fields. Contrary to the "vortex trapping" of the settling particles in vortex 
flow, an increase in the settling velocity was observed for most cases in cellular flow. Using the 
Stokesian drag law, Maxey (1987) found that the particle settling velocity is enhanced by turbulence 
through a Monte Carlo simulation and through asymptotic analyses of  particle motion in a pseudo 
Gaussian turbulence. It was shown that the increase in Vr was caused by the bias of  the particle 
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trajectories towards regions of high strain rate and low vorticity in a statistically homogeneous 
turbulent flow. Squires & Eaton (1990) tracked a large number of particles in a randomly forced 
isotropic turbulence generated using a direct numerical simulation (DNS). They have shown that 
particles have a tendency to accumulate in regions of high strain rate or low vorticity, which 
supports Maxey's (1987) finding for the Stokesian particle in a more realistic turbulence. Yeh & 
Lei (1991) reported an increase in the settling velocity for particles in a decaying homogeneous 
isotropic turbulence generated by a large eddy simulation. The change is slightly less than that of 
Maxey (1987) for a given combination of particle inertia and settling velocity (in still fluid). More 
recently, Wang & Maxey (1993) investigated the change in the settling velocity of aerosol particles 
in a forced isotropic turbulence generated by DNS. An even larger relative increase in the settling 
velocity was found than in the earlier investigation (Maxey 1987). Thus, it is clear that, while an 
ordered vortex flow does trap sediment particles as shown by Nielsen (1984), the "vortex trapping" 
cannot be the mechanism that is responsible for the reduction in the particle settling velocity in 
random turbulent flows. The bias in the particle trajectory actually enhances, rather than reduces, 
the particle settling velocity in a random velocity field. Nevertheless, it must be pointed out that 
the "vortex trapping" could be in force, such as bubbles in turbulent liquid flow, due to the 
added-mass force and the fluid acceleration. The bubble rising velocity should be reduced (Nielsen 
1993). In this paper, only heavy particles are considered, so that particles will tend to accumulate 
in regions of high strain rate or lower vorticity. We shall focus on the settling of particles in a 
random turbulence rather than ordered flows, such as vortex or cellular flow, which are far from 
realistic turbulence. 

To recapitulate, there are two opposing effects of the turbulence structure on the particle settling 
velocity: (i) the trajectory bias causes particles to collect in regions of high strain rate with a higher 
probability of greater downward fluid velocity; and (ii) the nonlineant) in the drag law and the 
turbulent fluctuation increase the effective particle time constants, which leads to an effective 
reduction in the settling velocity. It is clear that as the nonlinearity decreases, the second mechanism 
becomes unimportant while the first mechanism could be important. Thus, the focus of this paper 
shall be on the nonlinear drag range in which the second mechanism may be more important than 
the first one. In the works of Hwang (1985), Ikeda & Yamasaka (1989) and Mei (1990), the effect 
of the trajectory bias, the existence of which is clearly shown in Maxey (1987), was not included. 
However, numerous experimental data (Hwang 1985) have indicated that the settling velocity in 
a time-varying flow field is reduced compared with that in a still fluid. Maxey (1987) only considered 
a Stokesian particle, which rules out the mechanism for reducing the settling velocity. In Squires 
& Eaton (1990), correlations between the contours of the instantaneous concentration and that of 
the instantaneous second invariant of the turbulence deformation tensor, li d, were demonstrated. 
However, the effect of the settling velocity on the trajectory bias or the "preferential concentration" 
was not examined and the effect of the particle inertia was not examined thoroughly due to the 
computational cost. In Yeh & Lei (1991), a nonlinear drag law was used in general; but the 
contributions from the nonlinear drag and the trajectory bias to the settling velocity were not 
examined separately. The result reported was simply a confirmation of the trajectory bias effect 
on the settling velocity in a different turbulence. Wang & Maxey (1993) included a discussion on 
the effect of the drag nonlinearity on the settling rate in their DNS based on the data obtained 
for Rep ~ 1, in which Rep is the particle Reynolds number (see [4] below). The opposing effects of 
the drag nonlinearity and the trajectory bias were demonstrated; but the effect of the drag 
nonlinearity is not explored thoroughly. 

The purpose of this paper is to investigate, and to clarify, the effects of these opposing 
mechanisms by using a Monte Carlo simulation for particle motion in a Gaussian, pseudo 
turbulence with both linear and nonlinear drag laws. In section 2, the simplified equation for the 
motion of heavy particles is given and the effect of the nonlinear drag on the particle settling 
velocity in turbulence is illustrated analytically in the large settling limit. The Monte Carlo 
simulation procedure for particle motion is described briefly. In section 3.1, an analytical procedure 
for evaluating the particle dispersion and settling velocity is outlined following Mei (1990). The 
settling rate 2 evaluated under five different conditions is defined. The effects of these two opposing 
mechanisms on the settling of heavy particles are examined in detail in section 3.2; the contributions 
from the drag nonlinearity and the trajectory bias to the settling velocity are assessed. In section 
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4, the effect of the particle inertia and settling velocity on the trajectory bias is examined 
quantitatively by computing the ensemble average of  the second invariant of  the turbulence 
deformation tensor, Old) ,  on the particle trajectories. It is shown that increasing settling velocity 
results in an exponentially decreasing ( l id ) ,  a decrease in the trajectory bias and, therefore, a rapid 
destruction of the correlation between the concentration and turbulence structure. At zero settling, 
the largest ( I Id)  occurs at some finite particle inertia. 

2. P A R T I C L E  MOTION IN ISOTRO P IC  G A U S S IA N  T U R B U L E N C E  

The following form of the particle dynamic equation is used to study the effect of the turbulence 
structure on the settling velocity: 

4 3 dV = ]na3ppgel + q~6npfva(u -- V) [1] ~na pp - ~  

and 

dY 
- V = VTe~ + v. [2] 

dt 

The drag law is taken from Clift et aL (1978) as 

R e p  
~ b = C o ~ - = l + b R e ~ , ;  b = 0 . 1 5 ,  n=0 .687 .  [3] 

In [1]-[3], u(x, t) and V(t) are the velocities of the fluid and the particle relative to the mean uniform 
fluid flow, v is the particle turbulent velocity, VT is the actual settling velocity of  the particle in 
the gravitational direction el, Y(t) represents the trajectory of the particle in a frame moving with 
the mean flow, g is the gravitational acceleration, pp and Pr are the particle and fluid densities, v 
is the kinematic viscosity of the fluid and CD is the standard drag coefficient at steady state. The 
instantaneous particle Reynolds number is defined, based on the diameter of the particle, as 

[u - V J 2 a  
Rep = - -  [4] 

Y 

The effect of the history force on the particle dispersion in the Stokesian drag range was found 
to be small (Mei et al. 1991); the force resulting from the undisturbed fluid stress (in the absence 
of particles) and the added-mass force are of high order in comparison with the history force for 
a particle with a small Stokes number E = (Ogoa2/2v) I/2, in which co 0 is a typical frequency of the 
turbulence. These unsteady forces are, therefore, not included in the present investigation. 

The reduction in the settling velocity due to the nonlinearity of the drag law in an oscillating 
fluid or in a turbulence can be exemplified by taking the ensemble average, denoted by ( ) ,  after 
the initial transient, on both sides of [1]: 

4zta3ppg + 67zpfva < (u - V)~b > = 0, [5a] 

which gives 

2 ppa2g = VTS, [5b] V x + b(Ren(V - u)) - 9 pfv 

where V~ s is the settling velocity if the Stokes drag is in force or ~b = 1. For lit >> u0, a Taylor series 
expansion can be performed for the nonlinear term on the left-hand side of  [5b], which yields 

t n + l u2)2)}-, 
lit = VTS 1 + b Re7 + bn Re7 ~ ((v, - u, )2) + ((v2 - 

V~ [6] 

for particles in an isotropic turbulence [see Mei (1990) for detail]. In the above, Re~ = VT2a/v, v~ 
and uj are the turbulent velocity components of the particle and fluid in the direction of settling, 
and v2 and u2 are those on the direction perpendicular to gravity. The last term in the braces in 
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[6], which is positive, represents the effect of turbulence on the settling velocity and reduces V T for 
a given VTS- For V T comparable to the turbulence or smaller, the Taylor series expansion is invalid 
but the qualitative feature depicted by [6] persists. Similar results were obtained for a single-com- 
ponent frequency oscillation of a fluid by Hwang (1985) and Ikeda & Yamasaka (1989). 

To include both the effect of the trajectory bias and the effect of nonlinearity of the drag in the 
study of the particle motion in turbulence, a random, isotropic, Gaussian, pseudo turbulence is used 
and it is represented as 

N 

ui(x, t) = ~ [b~") cos(k °"1" x + co~")t) + cl ") sin(k~m) • x + c0¢m~t)], [7] 
m = l  

where N ( = 64 in this study) is the number of Fourier modes, and k ~") and cocm) are the wavenumber 
and frequency of the ruth mode. In [7], k ('~) and co ~") follow normal distributions with zero mean 
and variances k0 and co o (Maxey 1987), which are interpreted as the typical wavenumber and 
frequency of the turbulence. The random coefficients b~ ~) and cl m) also follow a normal distribution 
and are proportional to the turbulent root-mean-squared (r.m.s.) velocity u0. The typical frequency 
is related to the typical wavenumber of the turbulence as coo = yk0u0, Y >~ 0. The energy spectrum, 
which is incorporated in bl m) and c~ "), in this study is 

E . . .  32Uo 2 k 4 [-2k2"~ 
= ) , t83 

following Kraichnan (1970) and Maxey (1987). The details of the implementation can be found 
in Maxey (1987) and Mei (1990). It is noted that the above E(k)  lacks the k-5/~ inertial subrange 
and the dynamic feature of the turbulence is not incorporated. It is only an approximation for low 
Reynolds number turbulence. Thus, the quantitative results in this paper are limited to low 
Reynolds number turbulence and the effect of the turbulence Reynolds number on the settling rate 
and preferential concentration is not certain at this stage. It is also noted that there is no dynamical 
evolution and no development of third-order correlations in the above random Fourier mode 
representation for turbulence. While the quantitative results should be interpreted with caution, 
the Monte Carlo simulation in the above form can be quite useful in demonstrating the importance 
of the mechanisms that affect the particle settling velocity. 

By using the dimensionless variables 

"t=tkouo, ~i'=¥ko, ~ =  v__, [9] 
/20 

the particle dynamic equation can be made dimensionless as 

d(¢ 1 
dF -/~s[1 + b Reugl~ - ~'1"](~ - ¢¢) + F-~ [10] 

and 

d~  
d--~ = (¢. [11] 

Fr=uo2ko, /~s=9 vpr Reuo - u ° 2 a ,  ;t =--VT, [12] 
g 2 ppa2k 0 U 0 ' V U o 

are the Froude number (Fr), defined in Reeks (1977) to characterize the effect of the gravitational 
force on the particle dispersion, the inertia parameter for Stokesian particles (~s), or the ratio of 
the large eddy turnover time to the particle response time, the particle turbulence Reynolds number 
(Reu0) and the settling rate (2). It is noted that 2 does not enter [10] and [l 1]; rather it is part of 
the solution. For a Stokesian particle settling in a still fluid Reu0 = 0 and the settling rate can be 
found by balancing the Stokesian drag with the gravity, 

l 
~.s = Fr--r-~s. [13] 

The dimensionelss parameters in [10], 
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As an indication of  the nonlinearity of  [10], the time-averaged particle Reynolds number is defined 
a s  

Re0 = (Rep) .  [ 14] 

Equations [10] and [11] are solved using a muitistep fourth-order predictor(Adams-Bashforth)- 
corrector(Adams-Moulton) method. It is accurate up to O(At4). The numerical procedure can be 
found in Mei (1990). The ensemble averages are obtained over Np particles and a subsequent time 
average is carried out over a period of  (:rr - ~i), in which ~ is the instant the statistical average 
begins, when the particle reaches a dynamic equilibrium with the surrounding turbulence, Tr is the 
total simulation time for the particle. In this study, a value > 4//~s is chosen for ~ and the typical 
value of  (2~r- Ti) is around 20 for most cases except for very large/~s. 

The r.m.s, statistical error, G, for a random quantity x is estimated using the following expression 
(Bendat & Piersol 1986): 

r 2,; L -I 
E,= - - - -  ; [15] 

• 

is the variance of  x and T, is the correlation time of x. in which ax 
In the following sections, the overhead "--~" will be dropped and dimensionless quantities are 

implicit. 

3. S E T T L I N G  VELOCITY WITH L I N E A R  AND N O N L I N E A R  D R A G  LAWS 

3.1. Analytical prediction for the settling velocity in the nonlinear drag range without trajectory bias 

Mei (1990) studied analytically the dispersion of  particles with a large settling rate and with zero 
settling in a pseudo turbulence, described by [8], by extending Reeks (1977) analysis to the nonlinear 
drag range. Details can be found in Mei (1990). The results that are relevant to the present study 
are summarized briefly below. 

Because of  the drag nonlinearity associated with the finite settling velocity, the particle response 
time constants for the particle fluctuating velocity in the directions parallel to and perpendicular 
to the settling, fli -~ and fl~-~, are different. The particle fluctuating velocity, v~, is governed 
approximately by 

dv~ 
dt =fl~(u~-v~)' ~ = l , 2 a n d  3. [16] 

In the above, it is important to interpret fl i -~ and fl~-~ as the particle response time for the fluctuating 
particle velocity components in the quasilinear analysis for the nonlinear problem. The constant 
fl~ is yet to be determined as part of  the solution. The validity of  [16] and the introduction of fl~ 
can be, and has been, assessed by comparing the values of  the particle turbulence intensity (v2~) 
obtained in the quasilinear analysis with that obtained from the Monte Carlo simulation. For an 
arbitrary settling velocity, the following interpolation formulas were proposed in Mei (1990) to 
relate fl~, through 2, to the turbulence characteristics of the fluid and particles: 

8 7 "2 
Re0=Reu0 2 2 + ~ ( 3 - ( v ~ > - 2 ( v ~ )  / [17] 

[ 8 T fit = 1 + b(l - n)Reg + bn Reg- ' Reuo (22) 2 + ~ (3 - (v~) - 2(v~)) [18a] 

and 

fl~ = 1 + b Reg. [18b] 

1 
2 - [191 

Fr #2" 

The settling velocity is finally calculated from 
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The analytical expression for the particle intensity (v2,) in a turbulence described by [8] for a given 
set of 2 and fl, is obtained from the extended Reeks' (1977) solution (Mei 1990). The solutions for 
(v2,), fl,,//2, Re0 and 2 can be obtained through an iterative procedure. Equations [17]-[19] include 
the effect of turbulence associated with the nonlinear drag but neglect the trajectory bias effect 
completely. The above treatment for evaluating //~ is not exact; but it has been verified by 
comparing the results from the Monte Carlo simulation over a range of parameters. 

For a given particle, there are several settling velocities that can be defined, each depending on 
the turbulence environment, characterized by Reu0, and the particle Reynolds number Re 0 which 
determines whether the drag law is linear or nonlinear: 

(i) For particle settling in a still fluid (Reu0 = 0), one obtains 2~ = 2s defined by [13] 
if the Stokes drag is in force (Re0,~ 1). This settling rate, 2s, can always be 
defined for convenience even if Re0 ~ 1 or larger and the particle settles in a 
turbulent flow. 

(ii) For Reu0 ,~ 1 and Re0 ,~ 1, the Stokes drag is still in force but turbulence will 
enhance the settling velocity, as found by Maxey (1987). This settling velocity 
is denoted by Z2. 

(iii) In a still fluid with Reu0 = 0 but Re0 ~ O(1) or larger, the settling velocity is 
denoted by 2~; and it can be obtained simply by solving the nonlinear algebraic 
equation [6]. This settling velocity can be achieved if a particle settles in a 
relatively weak turbulence with 2 = Vx/uo = Re0/Reuo >> 1; hence the settling is 
not affected by turbulence. For the same//s,  23 > Z,, as seen from [6], because 
of the nonlinearity. Therefore, a comparison of 2s between the cases of linear 
and nonlinear drag under the same//s is not meaningful. Rather, an effective 
particle inertia parameter should be used in the linear case. 

(iv) For Reu0~ O(1) and Re0--, O(1), the nonlinear analysis of the particle dis- 
persion described by Mei (1990) gives 2 = z4 and it is computed from [19]. The 
difference between £3 and 24 is due to the effect of turbulence in the nonlinear 
drag range. In the limit of small Reu0, ~'4 r e c o v e r s  )t 3. 

(v) For Reu0~ O(1) and Re0 ~ O(1), the Monte Carlo simulation outlined in 
section 2 includes both the effects of the nonlinear drag and the trajectory bias. 
The resulting settling velocity is denoted as 25. This settling velocity is physically 
the most realistic one, but its accuracy is negated by the statistical error of the 
Monte Carlo simulation. Therefore, a large number of particles are required. 

3.2. Results and discussions 

For 2 = £2, Maxey (1987) has shown that the effect of the particle trajectory bias is the strongest 
when 7 = O~o/(kouo)=0, which corresponds to a frozen turbulence. As 7 increases, the eddy 
self-decay becomes important and particles are less likely to accumulate in regions of high strain 
rate and low vorticity. At Zs = 1, the increase in the settling velocity, Z2 - 2s, was 0.068 to 0.082 
for 3s = 1 and 0.08 to 0.1 for 3s = 4 based on the simulation of Np = 1000 particles (Maxey 1987). 
The present Monte Carlo simulation using a linear drag gives 2 - 2 s = 0.079 and 0.083 for//s = I 
and//s = 4 in runs with Np = 5000 particles. Good agreement is observed between the present results 
and that of Maxey. Np = 5000 is chosen so that the statistical error in the present simulation is less 
than that in the simulation by Maxey (1987), and a meaningful comparison can be made. Thus, 
the present Monte Carlo simulation is validated with regard to the effect of turbulence on the 
settling velocity in the Stokes drag range. 

In order to compare meaningfully the settling velocity based on a linear drag with that based 
on a nonlinear drag and to assess the effect of the trajectory bias, nearly the same effective particle 
inertia parameter should be used. For non-Stokesian particles, the effective particle inertia 
parameter is 32 ~ 3s(l + b  Reg). Since Re0 is affected by the turbulence structure, //2 is not a 
constant as 7 varies. For meaningful comparisons of different 2s, Reu0 = 4 and Fr = 1 are chosen 
first. Through trial-and-error, fls = 0.6667 gives 24 ~ 1 (actual value: 0.9975) and //~ ~ I (actual 
value: 1.0025) at 7 = ! by using the nonlinear analysis (Mei 1990). An order unity 2 is desirable 
because the trajectory bias effect is the strongest near 2 ~ 1 for 3s ~ 1. This group of parameters 
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give 23 = 1.0666 when the effect of  turbulence is neglected completely. In computing 22 for Stokesian 
particles, ).s = 1 requires fls = 1, instead of fls = 0.6667. 

Figure 1 compares 22, 23, 24 and )-5 as a function of  y for Reu0 = 4 and Fr = 1. For  23, 24 and 
)-5, fls = 0.6667 is used; while for 22, fls = 1. The error bars for ).4 and 25 are obtained using [15] 
for x --- Vl; the product of the variance and the correlation time is simply the particle diffusivity 
in the gravitational direction. For  fls ~ 1, the simulations are carried out with ( T r -  Ti) = 20. The 
number of particles used in the simulation to obtain 25 ranges from Np = 5000 to 31,000 (for ~ = 1). 
For  Monte Carlo simulation, the results are obtained using Stokesian drag, Np = 12,000, 15,000 
and 10,000 for ~ = 0.5, 0.6 and 0.7; the rest are obtained using Np = 4000 particles. They are 
presented to assist the interpretation of the results based on the nonlinear simulation. 

In figure 1, first note the comparison between the settling velocity in the still fluid (Reu0 = 0), 
).3, and the actual settling velocity from the nonlinear simulation, )-5, for the same particle. The 
effect of  the turbulence on the settling velocity in the nonlinear drag range is clearly represented 
because A2 = 25 - ).3 contains two opposing effects of  the turbulence: nonlinearity of  the drag and 
the trajectory bias. It can be seen that the overall effect of the turbulence reduces the settling 
velocity, except near ~ = 0. This is in contrast to the linear drag case in which the turbulence 
enhances the settling velocity. It appears that the effect of  the trajectory bias is stronger than the 
effect of  nonlinearity for y ~< 0.1, but it is offset to a large extent by the nonlinearity of  the drag 
for y > 0.1. As 7 increases, the Eulerian turbulence time scale decreases--which makes it more 
difficult for the particle to follow fluid turbulence. As a result, (v:~) decreases, f12 increases and 2 
decreases, as indicated in the nonlinear analysis by Mei (1990) or [l 7]-[19]. Furthermore, as Maxey 
(1987) found, an increasing 7 results in a decrease in the trajectory bias effect on the settling velocity; 
the trajectory bias effect practically vanishes beyond y -- 1. This trend agrees with the results of  
the present nonlinear simulation. Thus, for ~ ,-~ O(1), the effect of  the nonlinear drag is more 
important than the trajectory bias effect. Since the present result is for Re0 = 5.62, which is a 
relatively low Reynolds number compared with the larger values in the experiments cited in Hwang 
0985), the effect of the drag nonlinearity should be more dominant. 

To sort out the effect of  the trajectory bias in the nonlinear drag case, we examine closely the 
nonlinear simulation result at ~ = 0, which gives (25,/32) = (1.091, 0.9763), and at ~ -- l, which gives 
(25, f12) = (0.9764, 0.9888). As has been discussed in the introduction, there are two mechanisms for 
the change in 2: (i) the change in fie due to the nonlinearity in the drag; and (ii) the trajectory bias. 

1 "I l l l i i - . . f I . . . . . . . . .  I . . . . . . . . .  

~ o . . . . . . . . . o . o  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

4 

5 

0 . 9  . . . . . . . . . .  • . . . . . . . . .  " . . . . . . . .  
0 1 7 2 3 

Figure 1. Effect of the turbulence structure (7) on the particle settling velocity (2) using the Stokes drag 
with (fls = l, 2 s = l) and the nonlinear drag law with Reu 0 = 4, fls = 0.6667 and Fr = l: 22--Monte Carlo 
simulation using the linear drag law; 23--still fluid with the nonlinear drag law; 24--nonlinear analysis 
without the trajectory bias effect; 2s--Monte Carlo simulation using the nonlinear drag law and including 

both the effects of the trajectory bias and the nonlinearity of the drag. 
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Because f12 changes as well in the two simulations (y = 0 and y = I), the change in 2 could result 
from both mechanisms. However, it is observed that the relative change in f12 is Aft2/f12 = 0.013 from 
7 = 0 to 1, while the relative change in the settling rate is A2/2 = -0.117.  If one uses 2 = l/(Frfl2) 
to estimate the relative change in 2 caused by the decrease in f12, A2/2 = -A[32/f12 = -0 .013 would 
be obtained. The fact that A2/2 = -0 .117  >> 0.013 shows that the decrease in 2 as the turbulence 
structure changes from y = 0 to 1 is not caused by the increase in f12. Rather, the effect of the 
trajectory bias is responsible for the change in A2 in the nonlinear drag case. The similarity in the 
values of 22 and 25 at small y indicates that the trajectory bias is in force in both the linear and 
nonlinear drag cases. 

It is also seen in figure 1 that the settling velocity based on the nonlinear anlaysis, 24, is smaller 
than that of the simulation 25 for small values of 2. This arises because the nonlinear analysis does 
not take the trajectory bias into account. Thus, the difference (2 4 -  25) may be interpreted as due 
to the trajectory bias effect for small 7. For ~, > 0.7, the nonlinear analysis overpredicts, by a few 
percent, the settling velocity 25. Noticing that (24 - 25) is smaller than (23 - 24), which is mainly 
due to the nonlinearity of the drag associated with the fluctuation of  the velocity, it is appropriate 
to say that for ~; = 1 the effect of  the trajectory bias is small and that the nonlinear analysis can 
be used to assess the effect of  turbulence on the settling velocity satisfactorily. 

It should be pointed out that the settling velocity 22 shown in figure 1 is obtained from the Monte 
Carlo simulation using a linear drag with assumed fls = f12 ~ 1 and 2s = 1 as inputs. However, the 
effective particle inertia parameter f12 in the nonlinear drag range is not known apriori and it should 
be obtained as part of  the solution. A traditional method for determining f12 is to solve for 23 first 
by assuming u0 = 0. This gives 2 3 = 1.0666 and f12 = 1/23 = 0.9376, which are not accurate because 
the turbulence effects are completely neglected. Had this set of  data for (f12, 2) = (0.9376, i.0666) 
been used in the linear simulation, the 22-curve in figure 1 would be shifted upward to surpass the 
23-curve by about 6%. From this view point, the result from the nonlinear analysis, 24, is better 
than 22 in comparison with 25 in the nonlinear drag range for y ~ O(1). 

Figure 2 compares the settling velocity obtained from the nonlinear analysis given in Mei (1990) 
with that from the Monte Carlo simulation for Reu0 = 4 and Fr = 1 for y = 1 over a range of fls 
using Np = 4000. It can be seen that for y = 1, the nonlinear analysis without the trajectory bias 
effect gives a very reliable result. The largest absolute difference occurs, for 0.234 < fls < 7.475, at 
25 = 2.364 with 2 4 - -  2 5 = 0.036. This comparison indicates, again, that for a nonfrozen turbulence, 
the effect of the trajectory bias can be overwhelmed by the nonlinearity of the drag law. Shown 
in figure 2(b) is the corresponding particle Reynolds number, Re0, which indicates the degree of 
nonlinearity in the drag law, for 0.234 < fls < 7.475 and for Reu0 = 4 and Fr = 1 at y = I. Since 

Figure 2(a). 

2.5 

2.0 

1.5 

1.0 

0.5 ~ 

0.0 ~ 
0-1 

| | i . . . . .  ! . . . . . . .  

) "  4 ;  prediction 

o X 5; M C  simulat ion 

. . . . . . .  ! . . . . . . .  

10 0 1 0 1  13 
S 

Comparison of  the settling velocity between the nonlinear prediction 2 4 and the Monte Carlo 
simulation 2 5 for Reu 0 = 4, Fr = 1 and ~ = I. 



P A R T I C L E  S E T T L I N G  V E L O C I T Y  IN T H E  N O N L I N E A R  D R A G  R A N G E  281 

R e  

12 

10' 
o 

8' 

6' 

4' 

2'  

0 
0-1 

i i a . . . .  a a i i i i i . . 

~ O  A n ~ l ~ t i c a l ~  ~ l i c ~ i O n  

Me simulation 

. . . . . . .  i . . . . . . .  

10 ° 101 I~ 

Figure 2(b). Variation of the particle Reynolds number Re 0 as a function of fls for Reu 0 = 4, Fr = 1 and 
7=1. 

Re0 > 1 for fls < 7.475 in figure 2(b), it is clear that the nonlinearity of  the drag must be 
incorporated in the particle dispersion analysis. Otherwise, an overprediction in 2 would occur. In 
the cases considered by Hwang (1985), Re0,3, 1; hence the reduction in VT results from the drag 
nonlinearity, whose effect is much more important that the trajectory bias. 

4. S I M U L A T I O N  RESULTS FOR THE SECOND I N V A R I A N T  OF TH E T U R B U L E N C E  
D E F O R M A T I O N  T E N S O R  ON THE P A R T I C L E  T R A J E C T O R Y  

Maxey (1987) showed that the trajectory bias is caused by the accumulation of  particles in regions 
of high strain rate or low vorticity. If particles are treated as a continuum with velocity v(t, x), the 
equation governing the distribution of  the particle number density n(t ,  x ,  y ,  z )  can be expressed as 

dn 3n 
- + v .  Vn = - n V . v .  [20] 

dt t~t 

By integrating this equation with respect to time, it is seen that particles accumulate in regions of 
large negative V-v. For  particles with weak inertia, Maxey (1987) has shown that 

V " v ~ ~ s  1 ~ui ~uj 
dxj dx~' 

to the leading order in particle inertia fl~t. Since 

for fls >> 1, [21] 

I Id= - 2 \3-~xj x 3 x , j  $2 - - " [22] 

is the second invariant of  the deformatfon tensor of  the fluid turbulence, where S is the magnitude 
of  the strain rate tensor s~j --- (auddx j  + 3uj/~x~)/2 and ~j is the j t h  component of the vorticity, it 
follows that 

dn - -  2IId 
dt ~ f l ~ - - ,  for fls>> 1. [23] 

Hence, the effect of  the trajectory bias found by Maxey (1987) is directly related to li  d evaluated 
on the particle trajectory. It can be used as a measure of  the trajectory bias or preferential 
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concentration because particles tend to collect in regions of large negative lid. Squires & Eaton 
(1990) demonstrated, in the absence of  settling, that there are similarities between the instantaneous 
contours of particle number density and that of II 0 in their DNS. As a result, the particle 
concentration could be quite nonuniform in space and the settling velocity would increase. 

To examine further the effect of the turbulence structure on the particle settling velocity and the 
particle concentration (or number density) distribution, the ensemble average of the second 
invariant ( l id ) ,  which has been scaled by 2 2 uoko, seen by the particle is computed from the Monte 
Carlo simulation using the linear and nonlinear drag laws for various parameters. Figure 3(a) shows 
(IId( t ) )  for/~s = 1, 7 = 0, 2s = 0, 1 and 2 from the simulations with linear drag using Np = 15,000 
particles in each case. It can be seen that the largest magnitude of ( l id( t ) )  occurs when 2s = 0. 
At 2s = 2, (IId(t))  oscillates in time with a much smaller average value. This implies that when 
the settling velocity is small, particles will be able to find regions of large strain rate or low vorticity. 
As a result, there will be a correlation between the particle concentration and lid(t, x, y, z), as 
shown in Squires & Eaton (1990). As 2s increases, the particle trajectory becomes straighter, so 
the ability of the particle to find and reside in regions of large strain rate diminishes. Figure 3(b) 
shows the dependence of time-averaged ( l i d )  on the particle time constant/3s for 7 = 1 and )-s = 0 
for/~s between 1 and 50. The statistical error of ( I Id( t ) )  is evaluated from [15] with the variance 
of IIa near 0.9. The correlation time for IId is around 0.7 for 2s = 0; it decreases with increasing 
2s. The error for/3s = 50 is relatively large because ( T r -  T,) = 2, due to the much smaller At used 
for stability reasons. It is noted from the data that the maximum value of (IId)//3 s occurs near 
fls = i and (II  d }///s decreases as/3 s increases. This implies a loss of correlation between n (t, x, y, ~) 
and (IId(t,x,y,z)) as seen from [23]. Comparing figures 3(a) and 3(b), it is seen that 
(IId( 7 = 1,//s = 1, )~ = I)) is about 4 times smaller than (IId( 7 = 0,/~s = 1, )~ = 1)). This indicates 
the importance of the Euterian time scale, which characterizes the self-decay of  turbulent eddies 
on (II  d). Figure 3(c) shows the dependence of (II  d) on 2s for/~s = 1 and 7 = 1 [cf. figure 3(a) for 
~, = 0]. Although the relative statistical error is larger for 2s >~ 3.5, it can be seen that (IId ) decreases 
exponentially as - ( l i d )  ~ 0.t45 e x p ( -  1.2332s) for 2 s ~> 1. Hence, settling reduces the particle 
trajectory bias and effectively destroys the correlation between the concentration and turbulence 
structure. 

The difference between (IId( t ) )  obtained from the linear and nonlinear simulations, based on 
15,000 particles, with the same effective particle inertial parameter/i '  2 =/~s at the same 7, and 2 is 
not significant. At/~2 = 1, 7 = i and 2 = i, the nonlinear simulation gives a ( I Id)  that is 10% larger 
than that of the linear simulation, which is within or around the statistical error of the simulation 
for ( I ld) .  The value of (IId(t))  calculated from the nonlinear simulation over 15,000 particles has 
larger statistical oscillations in comparison with the linear case at otherwise the same conditions. 
This may be attributed to the nonlinearity of  the drag law, which slightly increases the high 
frequency energy of the particle turbulence. Thus, the previous discussion regarding the effect of 
2 and /3 s on (II  d) in the linear drag range remains valid in the nonlinear drag range. 

5. C O N C L U S I O N S  

(i) The particle settling velocity in turbulence in the nonlinear drag range is affected by both 
the trajectory bias and the drag nonlinearity. These two mechanisms have opposite effects. 
The effect of  the trajectory bias on the settling velocity is important for an almost frozen 
turbulence and 2 ,-~ 1. The existence of the trajectory bias is also demonstrated in the 
nonlinear drag range. On the other hand, for a nonfrozen, low Reynolds number turbulence 
near 7 = I, the effect of  the trajectory bias on the settling may be overwhelmed by the effect 
of the drag nonlinearity associated with the turbulence if the particle Reynolds number is 
large enough. 

(ii) The average value of the second invariant of the turbulence deformation tensor, ( l id) ,  
evaluated on the particle trajectory, can be used to describe the trajectory bias. It attains 
its maximum value at 2 = 0 for a given f12; it decays exponentially for 2 >t 1 and almost 
vanished for 2 ~ 3. It also vanishes for very large or small values of fl,; the maximum of 
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( l l  d ) occurs at order unity f12 for a given 2 and ~. For the same values of 2 and f12, there 
is no essential difference in (IId) between using linear drag or nonlinear drag. 
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